
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 767–783
Particle Swarm based Data Mining
Algorithms for classification tasks

Tiago Sousa a,*, Arlindo Silva a,b, Ana Neves a,b

a Escola Superior de Tecnologia, Instituto Politecnico de Castelo Branco, Avenue do Empresario,

6000 Castelo Branco, Portugal
b Centro de Informatica e Sistemas da Universidade de Coimbra, Polo II––Pinhal de Marrocos,

3030 Coimbra, Portugal

Received 10 November 2003; accepted 15 December 2003

Available online 18 May 2004

Abstract

Particle Swarm Optimisers are inherently distributed algorithms where the solution for a

problem emerges from the interactions between many simple individual agents called particles.

This article proposes the use of the Particle Swarm Optimiser as a new tool for Data Mining.

In the first phase of our research, three different Particle Swarm Data Mining Algorithms were

implemented and tested against a Genetic Algorithm and a Tree Induction Algorithm (J48).

From the obtained results, Particle Swarm Optimisers proved to be a suitable candidate for

classification tasks. The second phase was dedicated to improving one of the Particle Swarm

optimiser variants in terms of attribute type support and temporal complexity. The data

sources here used for experimental testing are commonly used and considered as a de facto

standard for rule discovery algorithms reliability ranking. The results obtained in these do-

mains seem to indicate that Particle Swarm Data Mining Algorithms are competitive, not only

with other evolutionary techniques, but also with industry standard algorithms such as the J48

algorithm, and can be successfully applied to more demanding problem domains.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Data Mining; Particle Swarm Optimisation; Swarm intelligence
*Corresponding author.

E-mail addresses: tsousa@est.ipcb.pt (T. Sousa), arlindo@est.ipcb.pt (A. Silva), dorian@est.ipcb.pt

(A. Neves).

0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.12.015

mail to: tsousa@est.ipcb.pt


768 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
1. Introduction

Alongside with the exponential growth of the information technologies, we have

witnessed a proliferation of data bases. Nowadays, it is fairly easy to create and cus-

tomise a data base tailored to our needs. Nevertheless, as the record number grows,
it is not that easy to analyse and retrieve high level knowledge from the same data

bases. There are not as many off-the-shelf solutions for data analysis as there are

for database creation and management, furthermore, they are pretty harder to suit

to our needs.

Data Mining (DM) is the most commonly used name to describe such computa-

tional analysis and the obtained results must conform to three main requisites: accu-

racy, comprehensibility and interest for the user [1].

DM comprehends the actions of (semi) automatically seeking out, identifying,
validating and using for prediction, structural patterns in data [2], that might be

grouped into five categories: decision trees, classification rules, association rules,

clusters and numeric prediction.

These patterns are ideally searched for in massive data sets, which could have ori-

gins as diverse as genetics, astronomy or agriculture.

Many approaches, methods and goals have been tried out for DM. Biology in-

spired algorithms such as Genetic Algorithms (GA) and swarm-based approaches

like Ant Colonies [3] have been successfully used. In this paper we propose the use
of Particle Swarm Optimisers (PSO) in classification rule discovery.

PSO is a new branch in evolutionary algorithms, which were inspired in

group dynamics and its synergy and were originated from computer simula-

tions of the coordinated motion in flocks of birds or schools of fish. As these

animals wander through a three-dimensional space, searching for food or evad-

ing predators, these algorithms make use of particles moving in an n-dimen-

sional space to search for solutions for an n-variable function optimisation

problem. In PSO, individuals are called particles and the population is called a
swarm [4].

PSO has proved to be competitive with GA in several tasks, mainly in optimisa-

tion areas. In phase I of our research we empirically compared three PSO variants

with two other algorithms, which have already proven to be reliable in this area: a

standard GA and J48––a Java implementation of C4.5. The PSO variants imple-

mented were Discrete Particle Swarm Optimiser [5] (DPSO), Linear Decreasing

Weight Particle Swarm Optimiser [6] (LDWPSO) and Constricted Particle Swarm

Optimiser [7] (CPSO).
Having established PSO competitiveness in classification rule discovery in phase I,

we then focused––on phase II––in optimising one particular variant in terms of tem-

poral complexity and attribute type support.

In Section 2 the underlying structure and algorithms used in our work are ex-

plained in detail. Sections 3 and 4 are dedicated to describing the work done in each

phase and presenting the experimental setup and obtained results from phases I and

II, respectively. Conclusions and future work are in Section 5.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 769
2. Design structure and algorithms

The overall structure of our work was designed to include three-nested algorithms

(see Fig. 1); each one fulfils a specific task and is described in details in the following

sections.
The innermost algorithm, which is the classification rule discovery algorithm, has

for its task to find and return the rule, which better classifies the predominant class in

a given instance, set. It is here that the PSO or GA algorithms are used.

The covering algorithm, receives an instance set (the training set), and invokes the

classification rule discovery algorithm to reduce this set by removing instances cor-

rectly classified by the rule returned by the classification rule discovery algorithm.

This process is repeated until a pre-defined number of instances are left to classify

in the training set. A sequential rule set is therefore created.
The aim of the validation algorithm––the out most algorithm––is not only to

determine the accuracy of a rule set returned by the covering algorithm but also

to gauge the liability of the whole classifying algorithm––classification rule discovery

and covering algorithms altogether. This is achieved by iteratively dividing the initial

data set into different test and training sets and computing average indicators, such

as accuracy, time spent, rule number per set and attribute tests number per rule.
2.1. Classification rule discovery algorithm––Particle Swarm Optimisation

As previously mentioned, the rule discovery process is achieved through a PSO

algorithm. PSO is inspired in the intelligent behaviour of beings as part of an expe-

rience sharing community as opposed to an isolated individual reactive response to

the environment. The Adaptive Culture Model [5], which is PSO’s framing theory,

states that the process of cultural adaptation is rooted into three principles: evaluate,

compare and imitate.

Evaluation is the capacity to qualify environmental stimuli and the sine qua non

condition to social learning. Evaluation itself is both useless and impossible without

the ability to compare; all of our metrics are but a comparison to a well-known unit

and a single value becomes pointless without the values of its peers. At last, imitation
Fig. 1. Three-nested algorithm application structure.



770 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
is the rawest form of experience sharing from the receiver’s standpoint; it involves

not only observation but also the realization of purpose and timing adequacy.

In PSO algorithms, a particle decides where to move next, considering its own

experience, which is the memory of its best past position, and the experience of its

most successful neighbour.
There may be different concepts and values for neighbourhood; it can be seen as

spatial neighbourhood where it is determined by the Euclidean distance between the

positions of two particles, or as a sociometric neighbourhood (e.g.: the index posi-

tion in the storing array). The latter is the most commonly used for two main mo-

tives:

• If space coordinates were to represent mental abilities or skills, two very similar

individuals may never come to meet in their lifetime, as to elements of the same
family, which may differ significantly from each other, but still, they will always

be neighbours.

• The computational effort required to process the Euclidean distance, when faced

with large number of particles or dimensions––in each iteration, the distance be-

tween every two particles would have to be calculated and for each particle the

nearest k neighbours would have to be sorted out.

The number of neighbours (k) usually considered is either k ¼ 2 or k ¼ all.
Although some actions differ from one variant of PSO to another, its pseudo-code

is as follows:

Initiate_Swarm()

Loop

For p¼1 to number of particles

Evaluate(p)

Update_past_experience(p)
Update_neighbourhood_best(p,k)

For d¼1 to number of Dimensions

Move(p,d)

Until Criterion.

The output of this algorithm is the best point in the hyperspace the swarm vis-

ited––and in this case, converged to. There are several variants of PSO, typically dif-

fering in the representation: Discrete or Continuous PSO [5]; in the mechanism used
to avoid spatial explosion of the swarm and guaranteeing convergence: Linear

Decreasing Weight [6] or Constricted PSO [7]; or in the mechanism used to avoid

premature convergence to local optima: Predator Prey [8] or Collision Avoiding

Swarms [9]. The variants used in our work was the Discrete PSO (DPSO), Con-

stricted PSO (CPSO), Linear Decreasing Weight PSO (LDWPSO) (Fig. 2).

There is a need to maintain and update the particle’s previous best position (Pid)
and the best position in the neighbourhood (Pgd). There is also a velocity (Vid) asso-
ciated with each dimension, which is an increment to be made, in each iteration, to



Fig. 2. Implemented PSO algorithms classified accordingly to representation and premature convergence

avoiding mechanism.

T. Sousa et al. / Parallel Computing 30 (2004) 767–783 771
the dimension associated (Eq. (1)), thus making the particle change its position in the

search space.
vidðtÞ ¼ vðvidðt � 1Þ þ u1idðPid � xidðt � 1ÞÞ þ u2idðPgd � xidðt � 1ÞÞÞ
xidðtÞ ¼ xidðtÞ þ vidðtÞ

�
ð1Þ
u1 and u2 are random weights defined by an upper limit, v is a constriction coeffi-

cient [7] set to 0.73. The general effect of Eq. (1) is that each particle oscillates in the

search space between its previous best position and the best position of its best

neighbour, hopefully finding new best points during its trajectory.

If the particle’s velocity were allowed to change without bounds the swarm would

never converge to an optimum, since particles oscillations would grow larger. The
changes in velocity are therefore limited by v––the constriction coefficient––forcing

the swarm to converge.

The value for this parameter and for the upper limits on u1 and u2 can be chosen

to guarantee convergence [7]. In our experiments v was set to 0.73 while u1 and u2

upper limits were set to 2.05.

2.2. Classification rule discovery algorithm––Genetic Algorithm

The algorithm used is a standard GA [10], and, as it was used mostly for bench-

marking reasons between evolutionary approaches, it will not be explained in detail.

In this algorithm a population of individuals is maintained and evolved according

to the principles of natural selection––survival of the fittest. The solution for the

problem––here a rule––is encoded in the individual’s chromosome, which, in our

implementation is a binary string.

Population is evolved by first selecting individuals for mating, using some scheme

to guarantee that fitter individuals have a greater probability of generating offspring.
As a selection scheme we use tournament selection. New individuals are then gener-

ated from the individuals selected for reproduction with the use of two operators:

one point crossover, which takes two individuals and returns two new ones which

result from exchanging segments of the parents’ chromosomes; and mutation, which

has a very low probability of flipping any bit in the new individual.

In order to avoid destroying good solutions, a technique called elitism is used: a

pre-defined number of the fittest individuals are automatically inserted in the next

generation.



772 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
2.3. Rule representation

Classification rules are no more than conditional clauses, involving two parts: the

antecedent and the consequent. The former is a conjunction of logical tests, and the

latter gives the class that applies to instances covered by this rule. These rules take
the following format:

IF attribute_a¼value_1

AND attribute_b¼value_2

� � �
AND attribute_n¼value_i

THEN class_x

In rule classifier systems there are two distinct approaches to individual or particle

representation: the Michigan and the Pittsburgh approaches [11]. In the Michigan

approach each individual encodes a single rule, whereas in the Pittsburgh approach

each individual encodes a set of rules. In our work, we follow the Michigan ap-

proach.
2.4. Rule evaluation––establishing reference points

Rules must be evaluated during the training process in order to establish points of

reference for the training algorithm: best particle positioning. The rule evaluation

function must not only consider instances correctly classified but also the ones left

to classify and the wrongly classified ones.

The formula used to evaluate a rule and therefore set its quality is expressed in

Eq. (2) [12]:
QðX Þ ¼
TP

TPþFN
� TN

TNþFP
if 0:06 xi 6 1:0; 8i 2 d

�1:0 otherwise;

�
ð2Þ
where:

• TP––True Positives¼ number of instances covered by the rule that are correctly

classified, i.e., its class matches the training target class.

• FP––False Positives¼ number of instances covered by the rule that are wrongly

classified, i.e., its class differs from the training target class.

• TN––True Negatives¼ number of instances not covered by the rule, whose class

differs from the training target class.

• FN––False Negatives¼ number of instances not covered by the rule, whose class
matches the training target class.

This formula penalizes a particle, which as moved out of legal values, assigning it

with negative value ()1.0), forcing it to return to the search space.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 773
2.5. Covering algorithm––rule set construction

The covering algorithm is basically a divide-and-conquer technique. Being given a

instance training set, it runs the rule discovery algorithm in order to obtain the high-

est quality rule for the predominant class in the training set.
Once found, this rule goes through a pruning process where unnecessary attribute

tests are removed. This is a simple process that iteratively removes attribute tests if the

quality of the obtained rule has the same or an higher value than the original rule.

Correctly classified instances are then removed from the training set and the rule dis-

covery algorithm is run once more. Iteratively a sequential rule set is built, and the cov-

ering algorithm runs until only a pre-defined number of instances are left to classify.

This threshold criteria value is user-defined as a percentage and it is typically set to 10%.

A default rule, to capture and classify instances not classified by the previous rules
is added to the rule set. Containing no attribute tests and predicting the same class as

the one predominant in the remaining instances, this rule takes the form:

IF true

THEN class_x.

2.6. Validation algorithm–– rule set and overall evaluation

The purpose of the validation algorithm is to statistically evaluate the accuracy of

the rule set obtained by the covering algorithm. This is done using a method known

as tenfold cross-validation [2].

The tenfold cross validation consists in dividing the data set into 10 equal parti-

tions and iteratively using one of this sets as a test set and the remaining nine as

training sets. In the end 10 different rule sets are obtained and average indicators,

such as accuracy, time spent, rule number per set and attribute tests number per rule

are computed.
Several other numbers for partitioning have been tried out, but theoretical re-

search [2] has shown that 10 offers the best estimate of errors.

Rule set accuracy is evaluated and presented as the percentage of instances in the

test set correctly classified. An instance is considered correctly classified, when the

first rule in the rule set, whose antecedent matches this instance and the consequent

(predicted class) matches this instance’s class.

2.7. Pre-processing routines––data extraction

In a pre-processing routine, the original data set is extracted from file, parsed and

analyzed. Two data structures are created: a normalized image of the data set and a

structure containing metadata information.

A state attribute is assigned to each instance. Manipulating this state value, it is

very easy and computationally efficient, to divide the data set into training and test

sets and to (pseudo-) remove instances. This attribute takes the following values:

TEST, TRAIN and REMOVED.



774 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
2.8. Post-processing routines––rule pruning and rule set cleaning

Recall that high level knowledge extracted from databases must conform to three

main requisites: accuracy, comprehensibility and interested for the user [1].

In classification rule discovery problems, the number of attribute tests per rule
and the number of rules per set is a major contributor for the comprehensibility

of the obtained results––fewer attribute tests and rules eases comprehensibility.

After a rule is returned from the classification rule discovery algorithm it goes

through a pruning process in order to remove unnecessary attribute tests. This is

done by iteratively removing each attribute test whenever the newly obtained rule

has the same or higher quality value than the original rule.

Just after the covering algorithm returns a rule set, another post-processing rou-

tine is used: rule set cleaning, where rules that will never be applied are removed from
the rule set.

As rules in the rule set are applied sequentially, in this routine, rules are removed

from the rule set if:

• There is a previous rule in the rule set that has a subset of the rule’s attribute tests.

• If it predicts the same class as the default rule and is located just before it.

So in the example below, rules number 2 and 3 will be removed and the rule set
will be reduced to the first and last rules:

Rule #1

If attribute_a¼x_a

Then class¼c_1

Rule #2

If attribute_a¼x_a and attribute_b¼x_b

Then class¼c_2
Rule #3

If attribute_c¼x_c

Then class¼c_3

Rule #4 - Default Rule

If TRUE

Then class¼c_3.
3. Phase I––testing Particle Swarm Optimisation in Data Mining

3.1. Pre-processing routines––data normalization

Only nominal attributes were supported in this phase and were normalized assign-

ing to each different attribute value an enumerated index. Lookup tables were kept

as metadata information. When parsing an instance, only this index is stored in the

normalised data image.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 775
3.2. Rule representation

Binary string representation is a requisite for the DPSO, so in this phase rules

were coded in binary strings in order to provide a fair experimental testing platform

for all implemented algorithms.
In our initial approach indifference was implemented with an extra attribute value

and applying Eq. (3) to determine the binary string length. Attribute test matching

would occur accordingly to Eq. (4):
Rule bit number ¼
Xnumber of attributes

a¼1

dlog2ð1þ different valuesaÞe ð3Þ

mðvra; viaÞ ¼
true if vra ¼ via or vra P different valuesa
false otherwise:

�
ð4Þ
Being vra the attribute value stored in the rule’s binary sub-string for attribute a and

via the instance indexed value stored in the normalized image of the data set.

Nevertheless, this approach revealed to be unbalanced, regarding indifference

probability occurrence, a more even approach was obtained assigning an extra bit

for indifference (Eq. (5)) as it can be seen in Fig. 3.
Rule bit number ¼
Xnumber of attributes

a¼1

d1þ log2 different valuesae ð5Þ
Fig. 3. Indifference occurrence probability with one value and one extra bit.



776 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
3.3. Classification rule discovery algorithm––loop end criteria

Inevitably, with more or less iterations, the swarm converges to an optimum (pos-

sibly just a local one) (see Fig. 4).

In this phase the criteria used to trigger the ending of the loop was the realization
that such convergence was achieved. This was done by monitoring the best particle’s

quality and stopping when it had been constant for a safe number of iterations.

In our work the number of iterations needed to trigger the ending of the loop has

been named as Convergence Platform Width and for convenience we refer to this cri-

teria in the same way.
3.4. Experimental setup

For each experiment the complete instance set was divided into 10 equal parts;

iteratively each of these parts is used as a test set and the remaining nine as training

sets. This is done in order to provide a significant averaged measure of the algorithm

performance. This procedure is called tenfold cross-validation; the number of folds

has been subjected to testing [2], and tenfold cross-validation is currently considered

a standard evaluation procedure in DM.

Different numbers of particles/individuals were tested since previous research has

suggested that PSO needs fewer particles than GA does need individuals to obtain
the same results, thus demanding fewer resources.
Fig. 4. Loop end criteria.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 777
Convergence Platform Width was set to 30 and maximum uncovered instances to

10%.

Trees obtained with J48 are easily converted to rules––each path from the root to

a leaf stands for a rule, each node stands for one attribute test and the leaf is the

rule’s consequent or predicted class.
The data sources used were obtained from the Department of Computer Science,

University of Waikato, Hamilton, New Zealand [13], and Information and Com-

puter Science, University of California [14].

3.5. Results and discussion

In Tables 1–3 we present the experimental results obtained in phase I. Accuracy

values are in percentage of success, and are obtained by averaging tenfold accuracy
results, with standard deviation. An average of accuracy from all the different pop-

ulation numbers is also presented to ease analysis.

Three data sets were used: Zoo, Breast-Cancer and Wisconsin-Breast-Cancer.

Zoo is a data set that classifies animals according to their characteristics. Breast-

Cancer and Wisconsin-Breast-Cancer are real data sets that classify if the tumour

was malignant/benign and if recurrence of events did happen.
Table 1

Phase I: experimental results for relation Zoo

Population DPSO CPSO LDWPSO GA J48

Accuracy Accuracy Accuracy Accuracy Accuracy

25 88± 6 81± 13 70± 14 89± 7 92

50 91± 5 80± 8 84± 12 91± 7

100 92± 6 85± 10 86± 8 89± 7

200 94± 6 85± 9 87± 10 87± 9

300 90± 6 93± 7 91± 5 91± 7

91 85 84 89

Table 2

Phase I: experimental results for relation Breast-Cancer

Population DPSO CPSO LDWPSO GA J48

Accuracy Accuracy Accuracy Accuracy Accuracy

25 73± 7 74± 6 77± 7 74± 6 73

50 75± 7 72± 7 74± 6 75± 7

100 77± 5 76± 7 75± 8 75± 7

200 77± 5 74± 6 76± 6 77± 6

300 77± 5 75± 7 75± 7 76± 6

76 74 75 75



Table 3

Phase I: experimental results for relation Wisconsin-Breast-Cancer

Population DPSO CPSO LDWPSO GA J48

Accuracy Accuracy Accuracy Accuracy Accuracy

25 94± 3 93± 3 91± 5 94± 4 93

50 94± 3 93± 4 92± 6 93± 3

100 94± 3 94± 3 94± 2 93± 4

200 93± 5 93± 4 94± 4 94± 3

300 93± 3 94± 3 94± 4 93± 3

94 93 93 93

778 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
Results obtained clearly state the competitiveness of PSO with industrial tree

induction algorithms like J48, a Java implementation of C45.

In the Zoo data set (Table 1), average results are inferior to J48, nevertheless in

Breast-Cancer data set (Table 2) and Wisconsin-Breast-Cancer data set (Table 3),

average results are equal or slightly superior to J48 leading to conclude that regard-
ing accuracy PSO can compete both with other evolutionary approaches and more

classical techniques.

From these results, we could conclude that an increase of particle/individual

above 25 does not bring any relevant improvement in the algorithm’s performance.

All evolutionary algorithms are equally efficient with a low number of particles/indi-

viduals, i.e. they have low spatial complexity.

We could also conclude that PSO based DM can compete both with other evolu-

tionary approaches and more classical techniques, at least in some data sets, in
terms, not only of accuracy, but also of spatial complexity. Nevertheless, all imple-

mented algorithms performed very poorly, regarding the time spent (results are pre-

sented in phase II), creating therefore the need for temporal complexity optimisation.
4. Phase II––optimising the classification rule discovery algorithm

Support for attribute types other than nominal urged in order to move to more
demanding areas and data sets.

We opted for the CPSO variant (see Fig. 2). Due to its continuous representation,

as opposing the binary representation of the DPSO variant, the Constricted variant

proved to be more qualified when it came to dealing with numeric attributes (both

integer and real). Although the LDWPSO does also have a continuous representa-

tion, it needs a fixed number of iterations, leaving little room for temporal complex-

ity optimisation, which was another of our concerns, for without optimisation in this

area, expansion to more demanding problems is seriously affected or even made
impossible.

Following the experimental platform, of the previous phase, the same data sets

were used, in order to assert whether this approach could offer significant improve-

ments.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 779
4.1. Pre-processing routines––data extraction and normalization

Asmentioned before support for numeric––integer and real––attributes was added.

All attribute values are normalized to the range ½0:0; t with 0:0 < t < 1:0, being t a
user pre-defined value, it stands for the indifference threshold where a higher value
will trigger the omission of the corresponding attribute test.

This normalised value is used not only in the data image but also in space dimen-

sions, avoiding costly conversions to detect attribute matching. The use of this nor-

malised value throughout data image, rule/dimensions, particle moving and attribute

matching was our strongest bet to temporal complexity optimisation.

Nominal attributes are normalised assigning to each different attribute value an

enumerated index #idx and applying Eq. (6).
vnorm ¼ idxv � t
#idx

: ð6Þ
idxv is the index of the attribute value v and #idx the total number of different

attribute values. Both integer and real types are normalized with Eq. (7).
vnorm ¼ ðv� vminÞ � t
vmax � vmin

: ð7Þ
vmin and vmax are the lower and higher attribute values found for this attribute.

4.2. Rule representation

In phase I attribute testing, indifference was implemented with an extra bit and
particles were coded in binary strings, as a result indifference probability occurrence

would vary accordingly to the attribute assigned bit number and its range of possible

values, in the interval]1/2, 3/4] (see Fig. 3).

In this phase a user defined threshold level maintains attribute-testing indifference,

therefore different values for this threshold were tested in order to evaluate its influ-

ence.

Rules are encoded as a floating-point array and each attribute is represented by

either one or two elements on the array, according to its type: nominal attributes
are assigned with one element on the array and attribute-matching tests are defined

as follows:
mðvr; viÞ ¼
true if bvr � #idxc ¼ bvi � #idxc
false otherwise:

�
ð8Þ
Being t the indifference threshold value, vr the attribute value stored in the rule for

testing and vi the instance value stored in the normalized image of the data set.

Integer and real attributes are assigned with an extra element in the array in order

to implement a value range instead of a single value
mðvr1; vr2; viÞ ¼
true if vr1 P t or ðvr1 � vr2Þ6 vi or ðvr1 þ vr2ÞP vi
false otherwise:

�
ð9Þ



780 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
vr1 can be seen as the center and vr1 as a neighbourhood radius, inside which

matching will occur.
4.3. Classification rule discovery algorithm––loop end criteria

In phase I the criteria used to trigger the ending of the PSO’s main loop was the

Convergence Platform Width, is this phase it is the realization that all particles in the

swarm are within a user-defined distance from the best particle in the swarm. As this

distance is no more than the radius of an hypersphere this criteria is here referred to

as Convergence Radius.

In order to manipulate equivalent threshold distances, considering that distance

ranges will differ accordingly to the dimension number, the distance formula used

is the normalized Euclidean distance
dðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðpi1 � pi2Þ

2
q

ffiffiffi
d

p
:

ð10Þ
p1 and p2 are particles and d the dimension number, pin stands for the ith coordinate
value of particle pn. As each dimension coordinate is bounded to the interval [0.0,

1.0] the maximum value for ðpi1 � pi2Þ is 1.0, which when squared remains 1.0,

therefore to normalize a distance, all that is needed is to divide it by
ffiffiffi
d

p
.

4.4. Experimental setup

We aimed to test phase I against phase II, both loop-end criteria and evaluate the

influence of different indifference threshold levels.
To maintain a fair experimental platform with phase I the same data sources were

used: Zoo, Breast-Cancer and Winsconsin-Breast-Cancer. Also tenfold cross-valida-

tion and the same number of runs were used.

The swarms were set to 25 particles, Convergence Radius to 0.1. As used in phase

I Convergence Platform Width was set to 30 and maximum uncovered instances to

10%.

Indifference threshold was tested with 3 values, 0.1, 0.5 and 0.7, in order to assert

its possible influence.
4.5. Results and discussion

In Tables 4–6 we present the experimental results obtained in this phase. Accuracy

values are in percentage of success/accuracy, and are obtained by averaging tenfold

accuracy results. In Table 7 we compare results obtained in each phase regarding the

time spent, presenting the time spent by each CPSO version and its reason (phase I/

phase II).
Regarding temporal complexity optimisation, the new CPSO version clearly out-

performed the one implemented in phase I (see Table 7) with up to 26 times faster.



Table 4

Relation Zoo

Phase I Phase II

J48 CPSO Platform width Radius

Indifference – – 0.1 0.5 0.7 0.1 0.5 0.7

Accuracy 92.0 84.8 89.3 66.7 45.7 89.0 77.0 46.7

Time spent 0.09 11.75 0.45 0.87 0.63 17.36 13.01 3.35

Number of rules 13 7 7 6 5 6 6 5

Tests per rule 5 2 5 6 4 5 4 4

Table 5

Relation Breast-Cancer

Phase I Phase II

J48 CPSO Platform width Radius

Indifference – – 0.1 0.5 0.7 0.1 0.5 0.7

Accuracy 72.9 74.2 74.3 74.8 72.6 76.7 75.1 73.3

Time spent 0.03 7.04 0.57 1.31 1.73 28.13 13.19 17.81

Number of rules 4 5 5 5 5 6 6 6

Tests per rule 2 2 4 4 3 5 5 5

Table 6

Relation Winsconsin-Breast-Cancer

Phase I Phase II

J48 CPSO Platform width Radius

Indifference – – 0.1 0.5 0.7 0.1 0.5 0.7

Accuracy 92.9 93.4 92.9 88.7 87.7 92.8 91.8 76.6

Time spent 0.02 17.34 1.53 4.80 36.82 85.01 67.16 18.05

Number of rules 55 7 7 9 104 7 7 5

Tests per rule 2 1 4 7 8 4 4 4

Table 7

Time spent––comparing phase I against phase II (convergence platform width)

Zoo Breast-Cancer Winsconsin-Breast-Cancer

I II I II I II

Indifference – 0.1 0.5 0.7 – 0.1 0.5 0.7 – 0.1 0.5 0.7

Time 11.75 0.45 0.87 0.63 7.04 0.57 1.31 1.73 17.34 1.53 4.80 36.82

Reason – 26.11 13.50 18.65 – 12.35 5.37 4.07 – 11.34 3.61 0.47

T. Sousa et al. / Parallel Computing 30 (2004) 767–783 781
There is a clear relation between indifference threshold level value and accuracy

results: best results were obtained with lower values for indifference threshold level.

Regarding accuracy, both CPSO versions did surpass J48 in the Wisconsin-

Breast-Cancer relation. Nevertheless, temporal complexity of both CPSO versions



782 T. Sousa et al. / Parallel Computing 30 (2004) 767–783
are still much more demanding than J48, possibly due to the nature of the algorithm

and processing involved.

Comprehensibility of results is related with fewer rules and attribute tests. Very

good results were obtained with both versions. Here too we can establish a relation

with the indifference threshold level: best results were obtained with lower values for
indifference threshold level.
5. Conclusions and future work

In phase I we proposed to test PSO in DM tasks, namely classification rule dis-

covery, and empirically compared the results with another evolutionary algorithm

(GA) and with J48, a Java implementation of C4.5.
Based on the obtained results, phase II was dedicated to improve one of the PSO

variants investigated. Our goals in this phase were temporal complexity optimisa-

tion, attribute type support expansion and evaluation of the possible influences of

indifference threshold values. We implemented and compared this variant with the

corresponding one in phase I and J48, in some benchmark data.

From the results, we can conclude that PSO can obtain competitive results against

J48 in the data sets used, although there is some increase in the computational effort

needed. We can also conclude, that lower values for indifference threshold offer the
best accuracy results.

Directions for future work include an empirical analysis of the influence of indif-

ference threshold with exploration and exploitation and applying this tool to more

demanding data sources––containing continuous attributes.
References

[1] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge discovery: an

overview, in: Advances in Knowledge Discovery and Data Mining, AAAI/MIT, Cambridge, 1996, pp.

1–34.

[2] Ian H. Witten, E. Frank, Data Mining––Practical Machine Learning Tools and Techniques with Java

Implementations, Morgan Kauffmann, 1999.

[3] R. Parpinelli, H. Lopes, A. Freitas, An Ant Colony Algorithm for Classification Rule Discovery, Idea

Group, 2002.

[4] J. Kennedy, R.C. Eberhart, Particle Swarm Optimisation, in: Proceedings of the IEEE, International

Conference on Neural Networks, Piscataway, 1995.

[5] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kauffman, 2001.

[6] Y. Shi, R.C. Eberhart, Empirical Study of Particle Swarm Optimisation, in: Proceedings of the 1999

Congress of Evolutionary Computation, Piscatay, 1999.

[7] M. Clerc, J. Kennedy, The particle swarm-explosion, stability and convergence in a multidimensional

complex space, IEEE Transactions on Evolutionary Computation 6 (1) (2002).

[8] A. Silva, A. Neves, E. Costa, Chasing the Swarm: A Predator Prey Approach to Function

Optimisation, in: Proceedings of the MENDEL2002––8th International Conference on Soft

Computing. Brno, Czech Republic, 2002.

[9] T. Blackwell, P.J. Bentley, Don’t Push Me! Collision-Avoiding Swarms. in: Proceedings of the

Congress on Evolutionary Computation, 2002.



T. Sousa et al. / Parallel Computing 30 (2004) 767–783 783
[10] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, Reading, Massachusetts, 1989.

[11] A. Freitas, A survey of evolutionary algorithms for data mining and knowledge discovery, in: A.

Ghosh, S. Tsutsui (Eds.), Advances in Evolutionary Computation, Springer-Verlag, 2001.

[12] H.S. Lopes, M.S. Coutinho, W.C.: An Evolutionary Approach to Simulate Cognitive Feedback

Learning in Medical Domain. Genetic Algorithms and Fuzzy Logic Systems: Soft Computing

Perspectives. ISBN 981-02-2423-0, World Scientific, Singapore 1997.

[13] ftp://ftp.cs.waikato.ac.nz/pub/ml/datasets-UCI.jar.

[14] http://www.ics.uci.edu/cmerz/mldb.tar.Z.

http://ftp://ftp.cs.waikato.ac.nz/pub/ml/datasets-UCI.jar
http://www.ics.uci.edu/cmerz/mldb.tar.Z

	Particle Swarm based Data Mining Algorithms for classification tasks
	Introduction
	Design structure and algorithms
	Classification rule discovery algorithm--Particle Swarm Optimisation
	Classification rule discovery algorithm--Genetic Algorithm
	Rule representation
	Rule evaluation--establishing reference points
	Covering algorithm--rule set construction
	Validation algorithm-- rule set and overall evaluation
	Pre-processing routines--data extraction
	Post-processing routines--rule pruning and rule set cleaning

	Phase I--testing Particle Swarm Optimisation in Data Mining
	Pre-processing routines--data normalization
	Rule representation
	Classification rule discovery algorithm--loop end criteria
	Experimental setup
	Results and discussion

	Phase II--optimising the classification rule discovery algorithm
	Pre-processing routines--data extraction and normalization
	Rule representation
	Classification rule discovery algorithm--loop end criteria
	Experimental setup
	Results and discussion

	Conclusions and future work
	References


